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Calculation 

Based on transfer matrix techniques and finite-size scaling, we study the 
oriented polymer (self-avoiding walk) with nearest neighbor interaction. In the 
repulsive regime, various critical exponents are computed and compared with 
exact values predicted recently. The polymer is also found to undergo a spiral 
transition for sufficiently strong attractive interaction. The fractal dimension of 
the polymer is computed in the repulsive and attractive regimes and at the spiral 
transition point. The later is found to be different from that at the collapse 
transition of the ordinary self-avoiding walk. 
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1. I N T R O D U C T I O N  

A polymer  chain describes a self-avoiding walk (SAW).  In the high-tem- 
perature  phase,  one general ly ignores the van der  Waals  a t t rac t ion  between 
monomers  of  the po lymer  chain and studies the po lymer  p rob lem as the 
n--* 0 limit of  the O(n) model.  (1) In two dimensions this has been the basis 
for calculat ion of  many  critical exponents  that  have impor t an t  physical  
meaning(i.2.3.s) and  also the s tar t ing poin t  for many  interest ing extensions 
of polymer  problems,  such as polymers  in the low-temperature  phase where 
monomer  a t t rac t ions  are taken into account.  (4-7) However ,  much less 
a t tent ion has been pa id  to the s tudy of po lymer  chains with or ientat ion,  
i.e., polymers  with an "ar row"  that  runs a long the chain. (8'91 Physically,  one 
can imagine sqch an or ienta t ion  as arising from dipole moments  of  the 
monomers  that  make  up the chain. Clearly,  if we only consider  interact ions 
between monomers  of  excluded volume type, then the or ienta t ion  does not  
p lay any role and there is no difference between the oriented and ord inary  
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polymers. Indeed, an oriented polymer chain can be considered as the 
n--* 0 limit of the complex O(17) model whose partition function is given by 

Z 1-I ( I + x S i .  S * + x S * . S j )  (1.1) 
{s} <~j> 

where S i is a complex n-component vector at site i, and * denotes complex 
conjugation, ( - )  denotes nearest neighbor lattice sites, and x is the 
fugacity of the monomer. The complex O(n) model is the same as the 
O(2n) model, hence the oriented SAW is in the same universality class as 
the ordinary SAW. 

An interesting extension of this model consists in introducing inter- 
action between the monomers that depends on their relative orientation. (9) 
More precisely, consider two monomers that are in a close encounter (for 
a square lattice, for example, this can be defined by neighboring lattice 
edges being occupied by the monomers); their relative orientation can 
either be parallel or antiparallel. We assign different Boltzmann weights 1 
or exp(20) to these two types of close encounters (see Fig. 1). Note that 20 
here differs from that in ref. 9 by a sign. 

Such an orientation-dependent interaction has been identified in the 
context of the complex O(n) model as a current-current interaction. (9) The 
complex O(n) model possesses a U( 1 ) symmetry associated with S--* ei~S; 
the corresponding current J~, = (i/2)(S* �9 0j, S - S.  0t, S*) can be identified 
as the tangent vector along the oriented chain. (s) Perturbing the complex 
O(n) model by a current-current interaction, 2 ~ JJdz dr, corresponds to 
introducing an orientation-dependent interaction for the monomers of the 
polymer chain. 

This model includes the ordinary SAW as a special case where 20 = 0. 
For 20 ,~0, parallel close encounters are suppressed. While for 20>> 0 
parallel close encounters are preferred, the polymer has the tendency to coil 
up to form a spiral. We shall denote these two phases respectively as the 
repulsive and attractive regimes. For some intermediate 20 > 0 we expect a 

Parallel close encounter 
weight: e x~ 

Fig. 1. 

Anti parallel close encounter 
weight: 1 

The  two types o f  close encounte r .  
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transition to take place. This transition, denoted the spiral transition, 
should be different from the usual collapse transition [or  the 0(0') point] 
of the ordinary SAW, t5-7) as one can readily see that in this case it is the 
self-trapping configurations that are responsible for the collapse. We there- 
fore expect a new multicritical point from this spiral transition. 

On the other hand, in the repulsive regime, regarding the current- 
current interaction as a perturbation from the ordinary SAW, which 
belongs to this regime, and using the fact that the perturbation is truly 
marginal,~ ~o~ one can determine critical exponents exactly as functions of 2 
(the renormalized ,~o). 191 For example, the operator which corresponds to 
the source of an L-leg oriented SAW with U(1) charge L (i.e., L arrows 
originate from the source) scales with exponent 

XL(2) = XL(0) -- 2~z2L 2 (1.2) 

where 

L" 9 - - 4  
xL(0) = ~-~ (1.3) 

is the critical exponent for the ordinary SAW. Also in this case, the fractal 
dimension of the SAW is still given by that of the ordinary SAW, D r =  4/3, 
since the energy operator Si" S* + S*-  Sj is associated with a self-avoiding 
ring, which cannot have a parallel close encounter. 

In this paper, we present a numerical study of this interacting oriented 
polymer problem based on transfer matrix and finite-size scaling techni- 
ques. We mainly consider oriented SAWs on a square lattice with periodic 
boundary condition. For the repulsive regime, we verify the various critical 
exponents xL(2) conjectured, and demonstrate the presence of a spiral 
transition as one increases 2o. At the spiral transition point, exponents v,. 
and y are determined numerically. 

The basic quantities in which we are interested are the connectivity 
constant and the critical exponents. They can be determined from the spin- 
spin correlation function. The spin-spin correlation function in the high- 
temperature expansion can be expressed as a sum over all configurations of 
oriented SAW with source and sink at the locations 0 and R of the two 
spins, respectively, such that each configuration is weighted by the length 
and the number of parallel close encounters as follows: 

(S(0) .  S*(R))  = ~ xll'~)e~~ (1.4) 

Here 1(r162 and m(Cr are, respectively, the length (number of steps) and the 
number of parallel close encounters of the oriented SAW cr Note that in 
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this model we take the weight of an antiparallel close encounter to be 1, as 
this choice ensures that the critical fugacity is independent of 2o in the 
repulsive regime, 19~ to which we shall mainly restrict our attention. 

The expansion can be rewritten as 

where 

{S(0).  S*(R) } =y'.  Zt(O, R) x ~ (1.5) 
/ 

Z/(0, R)=~o)t . , , (O,  R) e a~ (1.6) 
m 

is defined as the partition function of a polymer chain. Hence the correla- 
tion function is a generating function of the polymer partition function. In 
the vicinity of the critical point, x--* x c-, 

1 
(S(0)" S*(R)) ~ e  -IRI/r IRI ~ ~ (1.7) 

IKI-"' 

where x I is the exponent given in Eq. (1.2) and the correlation length 
diverges as Ix -x ' l  -~, The constants x", xl,  and v have geometrical 
meanings, as can be seen by inverting the above generating function. One 
readily shows that the SAW partition function has the asymptotic form 

Z,(O, R)-(x")-'Ir~'~)-l-2vF(lR[/l*'), l, IRI ~ ~ (1.8) 

where 

y(2) = v(2 - 2x1(2)) (1.9) 

and F is some scaling function. Hence, (x")-  ~ is the connectivity constant, 
which depends on the type of lattice, which by our choice of the interaction 
energy does not depend on 2 (2o). For a square lattice, the value has been 
determined with high precision to be 0.3790528(25)J~11 The thermal expo- 
nent, which is also independent of 2, is equal to the inverse of the fractal 
dimension of the model, since the average radius of gyration 

( [R[ )  = ~"a ]R[ Z/(0, R ) / ~  Zt(O, R) (1.10) 

behaves asymptotically as 

<IRI>-I  '/', l ~ o o  (1.11) 
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So geometrically, (xC) -~ and ), determine the number configurations of a 
polymer with given length, while v determines the average size. 

Besides the spin-pin correlation function, one can also consider the 
correlation function of an operator tkL with U( 1 ) charge L that corresponds 
to insertion of the source of an L-leg oriented SAW. In this case, the 
correlation function generates the "watermelon" diagram consisting of L 
mutually and self-avoiding oriented walks tied together at their extremities. 

2. P O L Y M E R  O N  A S T R I P  

Consider a polymer on a strip of finite width n. The generating func- 
tion of Z/(0, R), and hence the constants x c, y, and v, can be obtained from 
the transfer matrix. The method employed is similar to that used in the 
study of an ordinary polymer. ~m'3"51 A state is still characterized by 
monomer configurations on a column of the strip as well as the connec- 
tivity to the left of these monomers. But in our case, monomers and their 
connectivity carry orientations. As a result, besides the usual noncrossing 
constraint, connectivity has to satisfy an additional constraint which may 
be regarded as the noncrossing constraint for connectivity to the right of 
the monomers. As an example, the column of monomers and their connec- 
tivity shown in Fig. 2 cannot represents section of a single SAW. 

To keep track of the monomer interactions, one has to consider 
monomer configurations on a column of horizontal and vertical edges; this 
together with the fact that connectivity carries orientation vastly increases 
the number of possible states. In most cases we manage to diagonalize 
transfer matrix of dimension of the order of 7000 x 7000, which for the one 
polymer sector is equivalent to a strip of size 7 with translational symmetry 
taken into account. We list some of their dimensions in Table I, where SL.,, 
denotes the dimension of the translational-invariant sector with L polymers 
and n is the width of the strip. 

Fig. 2. Monomers and connectivity. 
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Table I. Dimensions of Various Polymers Sectors 

n St.,, $2.. S~.. $4.. $5,. $6.,, 

2 3 1 
3 I1 3 1 
4 45 17 3 1 
5 195 78 20 3 1 
6 881 402 122 26 3 1 
7 4121 2017 689 171 29 3 
8 19831 10470 3877 1114 231 35 
9 21630 6802 1656 302 

10 11140 2381 

For large ]RI, the generating function, Eq. (1.4), is given by the largest 
eigenvalue A of the transfer matrix of the one-polymer sector as .4 Mal and 
this defines a correlation length ~,(x, 20) by 

A IRI = e  - IRI/r ( 2 . 1 )  

The critical point is defined as the smallest x,~ where the correlation length 
diverges [i.e., A(x,~,,2o)=l]. Keeping only the dominating term in 
Eq. (1.8), we obtain that the free energy is simply given by 

f,,(2o) = - l og  x,~(2o) (2.2) 

from which one can determine all thermodynamic quantities. In particular, 
the susceptibility with respect to 2 can be obtained as 

d 2 
c,(2o) = - d ~ o  log x~ (2.3) 

We present in Fig. 3 a plot of this susceptibility against 2o for various 
strip sizes n ranging from 3 to 7. This susceptibility exhibits a peak near 
20 ~ 1, signaling a possible phase transition. 

Using the partition function, Eq. (1.8), we can express the average 
radius of gyration of a polymer chain of length l as 

,(0 /l 
(IRtl)  = 01--~gxlOgA(x,'~, 2 0) (2.4) 

Since there is only one polymer in the area n( IRA ), the average density of 
the chain is thus given by 

1 0 
c 

p,(2o) = n 0 log x log `4(x,,, 2o) (2.5) 
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Fig. 4. 

I I I t l  I I 

-2  -1 0 1 2 3 ~'o 

Fig. 3. Susceptibility c versus 2 0 for different strip widths. 

0 1 2 3 ~ o  

Density p versus 2 o. 
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This density is plotted in Fig. 4; it increases with 2o, where 20 ~ 1 divides 
the low- and high-density regimes. Since polymer  in the repulsive (attrac- 
tive) regime has low (high) density, 20 ~ 1 is roughly the spiral transit ion 
point. This change of density can also be seen from the coefficient of  expan- 
sion defined as 

1 alp,, 
t,,().o) . . . .  (2.6) 

p,, d2o 

In Fig. 5, we again notice a peak around 20 ~ I. 
F rom these figures, we see strong evidence of a singularity near 20 ~ 1 

building up as n - ,  oo. In Table II locations of  successive max ima  of c,, and 
t ,  are listed and these values converge to 1.17 + 0.2 and 1.12 +0.2,  respec- 
tively. It is very likely that  this is the location of the spiral transition point. 
We shall denote this point as 2*. 

So far we have concentrated on the critical line, but as in the case of  
the ordinary polymer,  one can give physical meaning to the entire (x, 20) 

t 

2 . '1  

-3 -2 

Fig. 5. 

i i i i  1 i r 

+1 0 1 2 3 ~ 'o  

t versus 20 for different strip widths. 
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Table II. k~ Obtained from Maxima of Successive c ,  and t , ,  Respectively 

n 3 4 5 6 7 Extrapolation 

2* 1.85 1.75 1.57 1.41 1.32 1.17(20) 
2* 1.82 1.65 1.53 1.41 1.33 1.12( 20 ) 

plane by considering the polymer as a chain with flexible length controlled 
by the fugacity x; the analysis is essentially similar to that of the ordinary 
SAW. (3"5) In summary, every point in the (x, 2 o) plane is accessible to the 
polymer chain; the critical line x =xC(2o) now corresponds to the isobar 
where the pressure vanishes. Polymer in the region below (above) this line 
is subjected to negative (positive) pressure and is swollen (dense). It can 
also be shown that crossing this critical line in the attractive regime, one 
encounters a second-order phase transition, while crossing it in the attrac- 
tive regime, one encounters a first-order phase transition characterized by 
a jump in the density defined as 

1 0 
p,,(x, 20) - -  log A ( x ,  20) (2.7) 

n 8 log x 

in this grand canonical picture. 

3. T H E R M A L  E X P O N E N T  v 

The correlation function ~(x, 20) diverges at the critical line x = x  ~. 
For given 20, the divergence is characterized by the exponent v. In the 
repulsive regime, the thermal exponent v is expected to be equal to that of 
the ordinary SAW, i.e., 3/4, while in the attractive regime, because the 
polymer is dense, it is expected to be equal to 1/2. Note that this value is 
also expected from the first-order transition nature of the critical line in this 
regime.(12) The spiral transition point which divides these two regimes has 
v = v.,. assumes some intermediate value between 3/4 and 1/2. Near x ~, the 
correlation length ~,, defined in Eq. (2.1) has the following finite-size scaling 
f o r m :  

~,,(X, 2 o ) ~ n F e ( ( x - x C ) n l / " ) ,  n~>l ,  x - x C ~ l  (3.1) 

From Eq. (2.5) and log A = -1/~,,, it is clear that 

. )-, = (log(p,, + l(x~ +l ,  2)/p,,(x,,, 2)) + 2 
v,, \ ~ n + l ) / n )  (3.2) 

converges to v as n --, ~ .  

822/81/3-4-3 
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Exponent v against 2o for different strip widths n. 

In Fig. 6 we plot successive values of v,, against ;to. The various lines 
for different strip sizes intersect almost at the same point at 2o ~ I where 
the spiral transition takes place. Below this point, the thermal exponent 
converges to 3/4 rather slowly, while above this point, v decreases to 1/2 
as expected from the earlier prediction. 

An alternative method to determine this exponent uses the phenom- 
enological renormalization relation 

1 ~n(~7~,, ;to) 1 ~,.(97,], ;to), n, m >> 1 (3.3)  
n m 

which is again based on the finite-size scaling assumption, Eq. (3.1). Note 
that the above relation is also used in the first-order transition line where 
;t o > ;t*; this is justified by the fact that the correlation length diverges at 
the critical point. The extrapolated critical value ffc for large n obtained 
from this relation can be checked to be in agreement with that obtained 
from the jump of the density p,,(x, 20). 

In the numerical calculation we take m = n + 1 in Eq. (3.3), where con- 
vergence is fastest, to determine successive critical lines x = ff~,. The thermal 
exponent can be determined from the derivative of the correlation length 
by extrapolating v n defined now as 

( fO~"+l(s176 ( n +  lX)_ 1)-1 
v, , -  log t  o)1O  )1 og ,, n / (3.4) 
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Fig. 7. Exponent v against 2 o for different strip widths n. 

The result, shown in Fig. 7, shares the same features as Fig. 6: Thermal 
exponents v extrapolated in the attractive and repulsive regimes are com- 
patible with those obtained before, but in this case the convergence is 
slightly faster. Furthermore, various lines cross also at Jt o ~ 1. 

Successive x~ obtained from Eq. (3.3) are shown in Fig. 8. Indeed, the 
extrapolated 2,~ for large n is not sensitive to 2 in the section of  the 

I 

- 3  

Fig. 8. 

- -  0 . 38  

i I i I I I 

�9 2 - 1  0 ! 2 3 

Critical fugacity x,~ against 2 0 for different strip widths n. 
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repulsive regime where ;to < 2d' as expected from the choice of the relative 
weight for the monomer interactions. So indeed the critical fugacity is equal 
to that of the ordinary SAW 

xC(;to) = 0.3790528(25) (3.5) 

Another interesting feature of these thermal exponents is the crossings 
of the various lines, which converge to the spiral transition point as n ~ oo. 
The corresponding thermal exponents and ;to values for various crossings 
of the lines are listed in Table III. Due to the small number of data and 
system sizes, it is difficult to obtain any reliable extrapolated values. None- 
theless, from both sets of data, it is likely that 

2* ~- 1.1 ___ 0.2 

vx = 0.63 _+ 0.05 
(3.6) 

It should be remarked that since the free energy, Eq. (2.2), is always 
greater than the free energy associated with a tightly wound spiral (which 
is given by ;to), xC in the entire repulsive regime up to the spiral transition 
point is given by Eq. (3.5) independent of ;to. We have 

log(xC) - l  > ; t  o for 2o~<;t* (3.7) 

This implies the following bound: 

2" ~< 0.970080(7) (3.8) 

The values for 2* deduced from Tables II and III  are very close to this 
bound. The fact that they exceed this bound can be attributed to the small 
system sizes we can handle and hence the unreliability of the extrapolated 
values. Note that the estimated 2* is very close to the value of the bound, 

Table III. At and v x Obta ined f rom Crossings of  Lines in Figs. 6 and 7, 
Respect ively 

n 3,4 4,5 5,6 

2* 1.166 1.128 1.111 
v.~ 0.628 0.642 0.641 

2* 1.016 1.084 1.087 
V.~ 0.645 0.627 0.622 
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i.e., log(x c)-1. It is tempting to conjecture that indeed the 2* is given by 
the bound, i.e., the value obtained from the critical fugacity of the ordinary 
SAW. If this is indeed the case, then this implies that there is no O(l) 
excitation from the tightly wound spiral, which suggests that the spiral 
transition is first order and quite different from the 0 point for the collapse 
of the ordinary SAW. We hope to pursue this issue in the future. 

4. C O N F O R M A L  WEIGHTS 

In the repulsive regime the exponent x/_(;t) that characterizes the 
scaling behaviors of the L-leg oriented SAW can be related to that of the 
ordinary SAW. The latter has been identified as the conformal weight of a 
twisted N =  2 supersymmetry theory with k = 1. ~4) Thus, the oriented SAW 
in this regime is described by a marginal perturbation of the twisted N = 2 
theory in the continuum limitJ 15) This exponent can likewise be computed 
using the transfer matrix technique. As in Eq. (1.4), we consider the 
correlation function of the L-leg operator ~bL on a finite strip of width n 
and define a correlation length ~z.,,, from the largest eigenvalue of the 
corresponding transfer matrix as 

AL.,,=e -l/eL." (4.1) 

From conformal field invariance argument, ~7) xz.,,(;to) defined as 

n 
xL.,,(2o) - (4.2) 

~4L.,,(~7,, ;to) 

converges to XL(2) as n ~ ~ .  Here the correlation length is computed at 
the critical point defined using a relation similar to (3.3). 

In Tables IV-VII we list the conformal weights computed at 20 = -3 ,  
- 2 ,  - 1 ,  and 0 for various L and strip widths n. The extrapolated values 
for n ~  oo are also given in the same tables. It is, however, not 
straightforward to compare these results with Eq. (1.2), since the relation 
between 2 and 2o is not known except at the point where they both vanish. 
For this ordinary SAW point, the data are listed in Table VII; here we 
clearly see that the extrapolated values agree very well with the exact 
values. In general, convergence is better for sectors with small L. 

In Fig. 9, we plot successive values of xl.,,(;to) against )t o for L =  I. 
Certain features are obvious from this figure: First, the conformal weight 
increases as 2o decreases, as predicted by Eq. (1.2). Note that 2 and 2o 
should have the same sign. Second, the crossings and minima (for large n) 
of the lines seem to converge to the point 2* given in Eq. (3.8). Further- 
more, the value of x1.,,(2") at the crossing (minimum) converges to zero as 
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Table IV. ConformalWeights at Ao= - 3  from Different Strip Widths and L 

n X l ,  n x2 ,  n x3,  n x4,  n 

2 0.12918 2.52743 
3 ~12553 2.08935 5.68672 
4 0.12275 1.05229 5.31323 10.01097 
5 0.12022 0.92181 4.12591 9.80083 
6 0.11810 0.85923 2.61618 8.58174 
7 0.11640 0.82220 2.32699 6.78043 
8 4.77810 
9 4.34188 

Ex~apolafion 0.116(8) 0.736(10) 1.731(9) 3.91(11) 

Table V. Conforrnal Weights at Ao= - 2  from Different Strip Widths and L 

II Xl ,  n X2, n X3, n X4, n 

2 0.12918 1.89081 
3 0.12479 !.61188 4.25433 
4 0.12186 1.01428 4.03999 7.56325 
5 0.11936 0.90026 3.31607 7A 1350 
6 0.11732 0.84433 2.50402 6.66471 
7 0.11570 0.81079 2.25849 5.61332 
8 4.57459 
9 4.20151 

Extrapolation 0.114(9) 0.724(8) 1.720(9) 3.33( 11 ) 

Table VI. Conformal Weights at ;ko= -1  from Different Strip Widths and L 

n XI ,  n X2, n X3, n X4, n 

2 0.12918 1.25419 
3 0.12272 1.13442 2.82 t 93 
4 0.11926 0,91246 2.78875 5.01677 
5 0.11682 0.83990 2.47811 5.02618 
6 0.11499 0.80148 2.20838 4.73237 
7 0.11359 0.77747 2.06935 4.34551 
8 4.01605 
9 3.81281 

Extrapolation :0.112(9) 0.703(8) t.690(8) 3.22(9) 
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Table VII. Conformal Weights at •o=0 from Different Strip Widths and L 

II X I ,  n X2, n X3, n X4, n XS, n 

2 " 0.12918 0.61757 
3 0.11651 0.65695 1.38954 
4 0.11076 0.66641 1.49351 2.47029 
5 0.10809 0.66892 1.54045 2.63885 3.85982 
6 0.10676 0.66948 1.56454 2.73158 4.09298 
7 0.10601 0.66946 1.57813 2.78720 4.23650 
8 2.82302 4.33011 
9 2.84573 4.39399 

Extrapolation 0.1041(6) 0.669(7) 1.603(7) 2.92(8) 4.598(7) 
Exact 0.10417 0.66667 1.60417 2.91667 4.60417 

n increases. This supports the conjecture that the spiral t ransi t ion takes 
place at x~(2) = 0. (9) F rom Eq. (1.2), we deduce the renormalized 2* to be 
5/96n. 

The vanishing of x~(2*) also implies that the exponent y at the spiral 
t ransi t ion point  is given by 

y = 2vx = 1.26 + 0.1 (4.3) 

3 

Fig. 9. 

/ 

I f I ~ I 

-2.0 - ] . 0  0.0 ] . 0  2.0 

Conformai weight xl,n plotted against 20 for different strip widths n. 
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using Eq. (1.9). It is intriguing that such a relation between y and vx also 
exists for the ordinary SAW at the 0(0') point. "3) It should be stressed that 
y obtained in this way is certainly not rigorous; it would be desirable to 
check it against other methods, for example, the computation of the 
generating function 

a(x, ;~o)= ~ (S(0)-S(R))  ~ Ix-xCl y (4.4) 
IR[ 

as x approaches x c. 
One could also compute quantities that are independent of 2. For 

example, the ratio 

n 1 n + 1  
r ~ ,  (2o)= (n,L.(ff~,, 2o)+ ~)/(n,z, . , , ( .~, i ,  2 o ) ] - ~ )  (4.5) 

should converge to 

xL(2) + 1/12 = :L '~  2 
xL,(2)+ 1/12 \L',/ (4.6) 

which depends only on the ratio of the number of "legs." However, because 
the size of our strip is small, successive r ~"~ do not form a monotonic L,L" 
sequence and extrapolation is difficult. We therefore compute the ratio rL, L' 
directly from the extrapolated values of the conformal weights given in 
Tables IV-VII. The results are presented in Table VIII. Convergence is bet- 
ter near 20 = 0; nevertheless, we see evidence that the data agree with the 
exact values which are independent of2o. 

5. CONCLUSION 

In this numerical study, we verified several predictions and conjectures 
made in ref. 9 regarding the repulsive regime. In particular, the critical 
exponent xL(2) was checked and the thermal exponent v was found to have 

Table VIII. Ratio of Conformal Weights at Various A o 

20 - 3 - 2 - 1 0 Exact 

r2,~ 4.11(14) 4.08(13) 4.02(16) 4.01(12) 4.00 
r3. I 9.10(27) 9.12(27) 9.08(31 ) 9.00(21 ) 9.00 
r4: 17.44(89) 17.28(84) 16.90(83) 16.02(66) 16.00 
r3.2 2.21(6) 2.23(5) 2.26(5) 2.24(6) 2.25 
r4. 2 4.24(15) 4.22(13) 4.20(12) 3.99(12) 4.00 
r4,3 1.91(7) 1.89(8) 1.86(8) 1.78(9) 1.78 
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the value 3/4 independent of 2. Much less is known about the attractive 
regime except that v is found to be 1/2, consistent with the fact that the 
polymer in this regime is dense. 

The numerical data also give strong evidence that a spiral transition 
occurs as the current-current coupling 20 becomes large. The location of 
this transition is determined with less accurcy to be 

2* ~ 1.1 +0.2 (5.1) 

which is very close to the bound given in (3.8). This could shed light on the 
nature of the spiral transition. At this transition point, we also deduce the 
exponents 

v,. = 0.63 ___ 0.05 
(5.2) 

y =  1.26+0.10 

which are different from those of the usual collapse transition of the 
ordinary SAW. This spiral transition certainly deserves further investigation. 

Besides the critical line x=xC(2),  the region x > x C ( 2 )  also deserves 
further investigation. For the ordinary SAW, it has been known for a long 
time that this region is critical and is described by the low-temperature 
phase of the O(0) model(~6~; exact expressions for the critical exponents 
that have geometrical meaning have also been given. It would be interesting 
to study the effect of the current-current perturbation of this phase. We 
hope to pursue these questions in the future. 
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